\(\int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx\) [659]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 289 \[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 b \left (5 a^2-8 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}} \]

[Out]

2*b^2*sin(d*x+c)/a/(a^2-b^2)/d/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/3*(a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^
(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*
sec(d*x+c)^(1/2)/a^3/d/(a+b*sec(d*x+c))^(1/2)+2/3*(a^2-4*b^2)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a^2/(a^2-b^2)/
d/sec(d*x+c)^(1/2)-2/3*b*(5*a^2-8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1
/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^3/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c
)^(1/2)

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3932, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-4 b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}+\frac {2 \left (a^2+8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 b \left (5 a^2-8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[In]

Int[1/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*(a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/
(3*a^3*d*Sqrt[a + b*Sec[c + d*x]]) - (2*b*(5*a^2 - 8*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec
[c + d*x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*b^2*Sin[c + d*x])
/(a*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*(a^2 - 4*b^2)*Sqrt[a + b*Sec[c + d*x]]*Sin
[c + d*x])/(3*a^2*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3932

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {-\frac {a^2}{2}+2 b^2+\frac {1}{2} a b \sec (c+d x)-b^2 \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {4 \int \frac {-\frac {1}{4} b \left (5 a^2-8 b^2\right )+\frac {1}{4} a \left (a^2+2 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )} \\ & = \frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}-\frac {\left (b \left (5 a^2-8 b^2\right )\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )}+\frac {\left (a^2+8 b^2\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^3} \\ & = \frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2+8 b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^3 \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (5 a^2-8 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^3 \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (5 a^2-8 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \left (a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 b \left (5 a^2-8 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.95 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.70 \[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {\sec (c+d x)} \left (b \left (-5 a^3-5 a^2 b+8 a b^2+8 b^3\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+\left (a^4+7 a^2 b^2-8 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+a \left (b \left (a^2-4 b^2\right )+a \left (a^2-b^2\right ) \cos (c+d x)\right ) \sin (c+d x)\right )}{3 a^3 (a-b) (a+b) d \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[1/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*Sqrt[Sec[c + d*x]]*(b*(-5*a^3 - 5*a^2*b + 8*a*b^2 + 8*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticE[(c
+ d*x)/2, (2*a)/(a + b)] + (a^4 + 7*a^2*b^2 - 8*b^4)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2,
 (2*a)/(a + b)] + a*(b*(a^2 - 4*b^2) + a*(a^2 - b^2)*Cos[c + d*x])*Sin[c + d*x]))/(3*a^3*(a - b)*(a + b)*d*Sqr
t[a + b*Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1678\) vs. \(2(321)=642\).

Time = 9.09 (sec) , antiderivative size = 1679, normalized size of antiderivative = 5.81

method result size
default \(\text {Expression too large to display}\) \(1679\)

[In]

int(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d/a^3/(a+b)/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(3/2)/(cos(d*x+c)+1)*(5
*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d
*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)-8*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+
c)-(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot
(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*cos(d*x+c)-6*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*
x+c)-8*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*
(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)+10*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b
-16*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(co
t(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3-2*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3-12*(1/(cos(d*x+c)+
1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*a^2*b-16*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elli
pticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2+((a-b)/(a+b))^(1/2)*a^3*cos(d*x+
c)*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)*sin(d*x+c)+5*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*s
ec(d*x+c)-8*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(
1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3*sec(d*x+c)-(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*s
ec(d*x+c)-6*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(
1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*sec(d*x+c)-8*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a
*b^2*sec(d*x+c)+((a-b)/(a+b))^(1/2)*a^3*sin(d*x+c)-3*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)-4*((a-b)/(a+b))^(1/2
)*a*b^2*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)-4*((a-b)/(a+b))^(1/2)*a*b^2*tan(d*x+c)-8*((a-b)/(a+b))
^(1/2)*b^3*tan(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 632, normalized size of antiderivative = 2.19 \[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left (3 i \, a^{4} b + 16 i \, a^{2} b^{3} - 16 i \, b^{5} + {\left (3 i \, a^{5} + 16 i \, a^{3} b^{2} - 16 i \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (-3 i \, a^{4} b - 16 i \, a^{2} b^{3} + 16 i \, b^{5} + {\left (-3 i \, a^{5} - 16 i \, a^{3} b^{2} + 16 i \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-5 i \, a^{3} b^{2} + 8 i \, a b^{4} + {\left (-5 i \, a^{4} b + 8 i \, a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (5 i \, a^{3} b^{2} - 8 i \, a b^{4} + {\left (5 i \, a^{4} b - 8 i \, a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - \frac {6 \, {\left ({\left (a^{5} - a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} + {\left (a^{4} b - 4 \, a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{9 \, {\left ({\left (a^{7} - a^{5} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - a^{4} b^{3}\right )} d\right )}} \]

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/9*(sqrt(2)*(3*I*a^4*b + 16*I*a^2*b^3 - 16*I*b^5 + (3*I*a^5 + 16*I*a^3*b^2 - 16*I*a*b^4)*cos(d*x + c))*sqrt(
a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin
(d*x + c) + 2*b)/a) + sqrt(2)*(-3*I*a^4*b - 16*I*a^2*b^3 + 16*I*b^5 + (-3*I*a^5 - 16*I*a^3*b^2 + 16*I*a*b^4)*c
os(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*
x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 3*sqrt(2)*(-5*I*a^3*b^2 + 8*I*a*b^4 + (-5*I*a^4*b + 8*I*a^2*b^3)*cos(d
*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/
3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*s
qrt(2)*(5*I*a^3*b^2 - 8*I*a*b^4 + (5*I*a^4*b - 8*I*a^2*b^3)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2
- 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)
/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) - 6*((a^5 - a^3*b^2)*cos(d*x + c)^2 + (a^4*b - 4*a
^2*b^3)*cos(d*x + c))*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/((a^7 - a^5*b^2
)*d*cos(d*x + c) + (a^6*b - a^4*b^3)*d)

Sympy [F]

\[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate(1/sec(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral(1/((a + b*sec(c + d*x))**(3/2)*sec(c + d*x)**(3/2)), x)

Maxima [F]

\[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(1/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)),x)

[Out]

int(1/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)), x)